Success With Telestroke: Speaking to Need

Sandra K. Hanson, MD
Medical Director, United Hospital Stroke Program and Telestroke Practice
National Stroke Statistics

- Annually, 795,000 people experience a new or recurrent stroke in the US.
- 5th leading cause of death
- Stroke is a leading cause of long-term disability and the leading *preventable* cause of disability.
- There are an estimated 7 million Americans who are stroke survivors (30% permanently disabled)
- Direct and indirect cost – 33 billion

Circulation 2015;133:e38–e360
Minnesota Stroke Statistics (2014)

- 2.2% of adults reported ever having had a stroke in their lifetime – more than 90,000 people.²
- 5% of all deaths due to stroke (2,172 annually); fifth-leading cause of death in the state.³
- 12,000 hospitalizations for acute stroke events.⁴
Rural versus Urban – Mortality

- Ethnicity and Disease – 2011, Sergeev AV
 - County based population study
 - 7 year time span (2000 to 2006)
 - Non-Strokebelt states
- Residents of rural counties had a **12%** higher risk of stroke death than those living in urban counties (Adjusted RR = 1.12)
- Postulated reasons:
 - Disproportionate distribution of risk factors
 - Socioeconomic status
 - **Availability and geographic barrier to receiving acute care options**
Stroke and Rural Minnesota

- More than a third of Minnesotans live more than 60 minutes from a Primary Stroke Center
- Nearly one in three stroke victims in Minnesota present initially to a small rural hospital
- The rural population has a greater percentage of seniors at higher risk for stroke

MDH 2010 – Stroke Survey
Need for...

- Immediate treatment
- Timely expertise
- Team
 - Local team engagement / education
 - Broader team integration / coordination
- Going the second mile...
Immediate Treatment Need

The play of time and Treatment options
NINDS study (3hr time window)
- 11% increase cures (MRS 0–1)
- NNT = 8 (to achieve one “cure”)

Pooled analysis of tPA studies
- NNT = 2 (to improve one grade on MRS in pts treated under 3hrs)
 - (BMJ 2004;324:723–9)

ECASS III – European study extending time window to 4.5 hours
- (NEJM 2008;359:1317-29)
Odds of excellent outcome (mRS 0–1) decreasing with time even within the effective time
Intravenous tPA – Rescue treatment for the stroke victim – available since 1996

ARE WE DELIVERING?

- National estimates of tPA use 1%
 - 2004 survey/One fifth of US hospitals (370K pts)

- GWTG hospitals 2010–2013 6.5%
 - 1030 hospitals – ASA quality surveillance

- MDH registry 2011 13%
 - IV tPA or catheter based treatment

- Centers of excellence in acute care of stroke 20–30%
Figure 1 Trends in tissue plasminogen activator (tPA) utilization rates by hospital location, Nationwide Inpatient Sample, 2001-2010

Progressive Rural Urban Disparity in Stroke Care, Neurology 2017;88:441-448
How fast are we treating?
AHA/ASA recommendation DTN 60 min

- National Stroke Registry
 - 43,850 patients treated (6.5% of all ischemic stroke)

- Results:
 - Median DTN time 67 min
 - 41% receiving TPA within 60 min
 - Outcomes if DTN time < 60min
 - Lower in-hospital mortality by 1.7%
 - Lower bleeding rate – decreased by 1%
 - Higher rate of discharge to home – increased by 5%
 - Every 15 minutes saved, results in 5% relative risk reduction in inpatient mortality

Fonarow GC et al. JAMA 2014;311:1632-1640
Early Results with Telestroke Code

- First telestroke treatment case 2006, Glencoe MN...

- % treated with tPA – of all ischemic stroke discharges in the first year of telestroke
 - My metro site 12% versus My first rural partner 21%

- Convinced me within a few years of the need to get Neuro expertise early in code to make these decisions
% of all ischemic stroke treated
 - 24% – FY 2012

Reasons:
 - Stroke code process
 - Educated/aggressive triage – cast a wide net
 - Stroke neurology leadership
 - Eyes on the patient
 - Expertise
 - Accessing newer options
 - Finding ways around previous factors excluding patients
 - Extending time window with imaging

Door to Drug IV Year of intervention

<table>
<thead>
<tr>
<th>FY</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73</td>
<td>76</td>
<td>72</td>
<td>51</td>
<td>48</td>
<td>40</td>
</tr>
</tbody>
</table>
Stroke Neurology
PHILOSOPHY of PRACTICE
Subspecialty care when and where it is needed

ED physician

Primary Care

Neurologist

ED physician Stroke neurology
What does the local application of subspecialty expertise offer
EXCLUSION CRITERIA

- TIME >3hrs from onset
- Mild or resolving deficit
- Seizure at onset
- Presentation of SAH
- SBP>185 or DBP>100 despite attempts to treat
- Glucose >400, <50
- Recent use heparin and abn. aPTT
- Platelet count <100,000
- Recent use warfarin and INR>1.7
- CT showing hemorrhage
- History of intracranial hemorrhage
- Untreated aneurysm, AVM
- Stroke or serious head trauma within 3 mos
- Presentation of acute MI or post-MI pericarditis
- GI or GU hemorrhage within 3 wks
- Arterial puncture – noncompressible site within 1wk
- LP within 3 days
- Major surgery within 2 wks

NINDS study (3hr time window)
11% absolute increase in very good outcome (MRS 0–1)
NNT = 8 (to achieve one “cure”)
So what has changed:

- Time window for IV tPA expanded to 4.5hrs
- Intraarterial treatment (mechanical thrombectomy)
- Changes in treatment criteria with new data about the safety profile
 - Treating mild and rapidly improving stroke
- Multimodal imaging
- Improvements in triage
 - Recognizing the hard to recognize
 - Distinguishing the imitators
What about Intra-arterial (IA) therapies?
Mechanical Thrombectomy
Summary of 2015 Trials - Clinical Benefit Adding mechanical thrombectomy to tPA

<table>
<thead>
<tr>
<th>Trial</th>
<th>90–day mRS 0–2 (or good outcome)</th>
<th>OR (95% CI)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=1288</td>
<td>Endovascular (most tPA+MT)</td>
<td>Control (most tPA)</td>
<td></td>
</tr>
<tr>
<td>MR CLEAN (n=500)</td>
<td>32.6%</td>
<td>19.1%</td>
<td>2.16 (1.39–3.38)</td>
</tr>
<tr>
<td>EXTEND–IA (n=70)</td>
<td>71%</td>
<td>40%</td>
<td>4.2 (1.4–12) p=0.01</td>
</tr>
<tr>
<td>ESCAPE (n=316)</td>
<td>53%</td>
<td>29.3%</td>
<td>1.8 (1.4–2.4) p<0.001</td>
</tr>
<tr>
<td>SWIFT PRIME (n=196)</td>
<td>60.2%</td>
<td>35.5%</td>
<td>2.75 (1.53–4.95) p=0.008</td>
</tr>
<tr>
<td>REVASCAT (n=206)</td>
<td>43.7%</td>
<td>28.2%</td>
<td>2 (1.1–3.5)</td>
</tr>
</tbody>
</table>

Why not go with the catheter then?

REASONS:

- Only about 30% of our patients treated with some sort of rescue treatment are candidates for mechanical thrombectomy. The rest receive IV tPA alone for smaller artery blockages.

- IV tPA is much faster and more available and has some level of success.

- Studies utilized a combined approach (tPA followed by mechanical thrombectomy) vs tPA alone.
Case

- Young woman with sudden onset speech difficulty, right face, arm and leg paralysis
- CT scan – “clot” sign indicating this was a large vessel blockage
- Intravenous tPA started 110 minutes after stroke had started
She was taken to the “cath lab” for an angiogram where this large vessel occlusion was still documented to be present despite IV tPA and then a catheter based intra-arterial treatment was successful in opening the vessel.
Case

- Immediate improvement in speech and weakness when large artery was opened
- No stroke symptoms or disability 2–3 months later despite the small stroke seen on MRI
Strict Exclusion vs Common Sense “The List”

- TIME >3hrs (now 4.5hrs for IV)
- Mild or resolving deficit
- Seizure at onset
- Glucose >400, <50

Imaging and Clinical picture

- Presentation of SAH
- Presentation of acute MI or post-MI pericarditis
- SBP>185 or DBP>100 despite attempts to treat
- CT showing hemorrhage
- History of intracranial hemorrhage

- Recent use warfarin and INR>1.7
- Recent use heparin and abn. aPTT
- Platelet count <100,000
- GI or GU hemorrhage within 3 wks
- Arterial puncture – noncompressible site within 1wk or LP within 3 days
- Stroke or serious head trauma within 3 mos
- Major surgery within 2 wks
- Untreated aneurysm, AVM

IA or Device treatment
Wake Up Stroke and thrombolysis

- Approximately 20% of patients wake up with their symptoms
- Since time of onset unknown, time last normal – time patient went to sleep.
- Excludes many patients that might otherwise be good thrombolytic candidates
- Meta-analysis of 31 studies reporting timing of 11,816 strokes – the onset of symptoms was 55% more likely to occur between 6 am to noon.

Next area of change that will increase our use of tPA, but will likely require some rapid imaging review requiring expertise.

Large RCTs– THAWS (Japanese study – 0.6mg/kg)
 - WAKE-UP (European study – 0.9mg/kg)
 - I–WITNESS (North American study – 0.9mg/kg)
 - DAWN – (US – mechanical thrombectomy in wakeup)
 - NORTEST
Adding Newer Imaging Options

- Standard noncontrast CT – ischemic vs hemorrhagic
- CT Perfusion and CT angio
- MR DWI/Perfusion and MR angio
- Large vs small vessel
- Mismatch pattern on perfusion suggesting “brain to save”
- Excluding imitators
Serious cases we can miss in triage that may seem nonfocal at first

- Isolated aphasia – “confusion” left – MCA delirium
- Isolated VF cut – “blurred vision” PCA migraine, nonspecific blurred vision complaint
- Abulia, monoparesis ACA Seizure (CPS), peripheral nerve
Serious cases we can miss in triage that may seem nonfocal at first

- Isolated vertigo
 - PICA
 - labyrinthitis, Meniere’s

- Coma, fluctuating deficit w bilateral signs
 - Basilar
 - Seizure w posturing of limbs ataxia –may appear drunk

- Hypersomnia, eye mvmt disturbance bilateral motor symptoms
 - Artery of Persheron
 - Post–ictal state, other encephalopathy, basilar artery thrombosis
Improved Accuracy of Stroke Diagnosis with Telemedicine

- StrokeDOC trial compared the accuracy of diagnosis and treatment decisions of Stroke Neurologists using:
 - Telestroke video/audio connection and CT review
 - Versus telephone consultation alone

- Correct treatment decisions were made more often when telemedicine was used than with telephone alone (same practitioners):
 - 98% (n=108)
 - 82% (n=91) (p=0.0009)
A complex triage/treatment plan:

Call a stroke code – if within 7–8 hrs of onset or “wake-up” stroke and let the expert team review the case for:

1) Correctness of diagnosis and 2) Imaging 3) Treatment choices

Tx can start within 4.5hrs

1) Small vessel – IV tPA

2) Large vessel – 1) IV tPA followed by mechanical thrombectomy

2) IV tPA alone 3) mechanical thrombectomy alone

Tx would start after 4.5 hrs or wake-up stroke

1) Small vessel – aspirin

2) Large vessel – large vessel occlusion but minimal infarct core

 4.5 to 8 hours – mechanical thrombectomy

Beyond 8 hours w basilar artery thrombosis – mechanical thrombectomy
Complex decision tree

- Large artery versus small artery
- Time frame and treatment choices
- Newer imaging strategies with rapid interpretation within the clinical context
- Recognizing stroke imitators
- Recognizing unusual stroke presentations

- Not the simple CT scan/IV access and recipe for treatment we thought in 1996!
Need for Team

- Local team engagement/education
- Broader team integration/coordination
United Hospital
Allina Health Telestroke

- Videoconferencing equipment at a primary site and remote site allowing stroke clinicians to remotely offer consultation on an emergent basis
- Purpose: Full participation of a stroke clinician in a “stroke code” at a remote site for the purpose of aiding the local “stroke team” in making a thrombolytic or interventional treatment decision
Developing a partnership
“Hub and Spoke”

- Meetings to garner support and interest
- Gain administrative and clinician agreement to go forward / contract
- Credentialing TS physicians

- Team meetings with partner hospital staff (Telestroke team) to formulate a telemedicine stroke response process – a local “Stroke code team response
 - Code team development – nursing, physician, lab, pharmacy, radiology
 - Paperwork design – flow sheet, standing orders, other tools
 - Administrative – quality/nursing staff to develop plans for quality improvement work
- Technology – acquire equipment, set up unit, downloading software

- Go live….. 2 days of in–services with ER staff – review roles in stroke code process and TS equipment use, participate in mock stroke code, NIHSS training, stroke recognition
- Quarterly review – Rural hospital Telestroke team / Hub hospital leadership
Stroke Code Algorithm

Stroke Code Protocol

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity and Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 min</td>
<td>Hospitalist/ER MD: Initiate Stroke Code, complete assessments, BP management</td>
</tr>
<tr>
<td>5 mins</td>
<td>HUC: Initiate RRT/Stroke Code and initiate Telestroke consult with Care Connect</td>
</tr>
<tr>
<td>0-10 mins</td>
<td>Stroke Neurologist: Vital signs, neuro check, cardiac monitor, O2 and weight; notify MD if BP > 185/110</td>
</tr>
<tr>
<td>10-15 mins</td>
<td>1st RN: Connect to Nefsis and complete the NIH Stroke Scale</td>
</tr>
<tr>
<td>15-20 mins</td>
<td>2nd RN: Monitor patient to CT scan</td>
</tr>
<tr>
<td>20 mins</td>
<td>Treatment decision and communication of plan to other physicians</td>
</tr>
<tr>
<td>30 mins</td>
<td>CT resulted and called to Stroke Neurologist</td>
</tr>
<tr>
<td>30 mins</td>
<td>Pharmacist: Drug calculation done – ready to mix tPA</td>
</tr>
<tr>
<td></td>
<td>Phlebotomist/RT: Labs drawn and RT to complete iSTAT Creatinine</td>
</tr>
<tr>
<td></td>
<td>Radiologist/CT Tech: Clear CT scanner and setup Telestroke equipment</td>
</tr>
</tbody>
</table>

PAUSE FOR THE CAUSE

The 5 Rights of Medication Administration

- Administer Activase (t-PA) per protocol and post-tPA monitoring
Direction of United Hospital Telestroke Program

Conclusions
Telemedicine Work Now and Going Forward
United Hospital Network

- Telestroke Service – Site Expansion
 - Sites active in 2015 *
 - Sites developed 2016 *
 - Sites invited for 2017 *

- Active stroke code projects
 - EMS prealert / shorten DTN
 - Improve transfer coordination for IA
 - Keeping IV tPA patients on site – 24hr FU

- Add nonurgent stroke consultation for subacute care

- Mini-Hub concept
 - Duluth
 - Brainerd
 - Aberdeen

- Teleneurology
Telestroke Clinical Model, Results, and Administrative Discussion
Clinical benefits for patients
A national comparison

- Allina Health – Clinical Model (January 2014–Q1 2015)
 - Percent treated with tPA
 - 26%
 - Door-to-needle time – mean
 - 56 minutes
 - Symptomatic intracerebral hemorrhage rate
 - <2%

- Get With the Guidelines US Experience – before and after intervention:
 - Percent treated with tPA
 - 4% (2003–2005)
 - 7% (2010–2011)
 - Door-to-needle time – mean
 - 79 minutes (2003–2009)
 - 67 minutes (2010–2013)
 - Symptomatic intracerebral hemorrhage rate
 - 5.68% (2003–2009)
 - 4.68% (2010–2013)

Clinical Model to Achieve These Results

- **Clinical features of TS Code:**
 - Comprehensive triage process casting a wider net (hub educates team to this process)
 - Earlier engagement of Stroke Neurology in the beginning of the code and code leadership for diagnostic accuracy and partnership in decision making
 - In-depth consultative work performed on all stroke code cases including those excluded from tPA during the stroke code to enhance the value of the service to the patient and local hospital

- **Benefits to regional site:**
 - “Wider net” captures the hard to recognize strokes or those that may have been excluded without the applied expertise.
 - Early subspecialty expertise applied to both the diagnostic and treatment questions in “just in time” approach
 - Increases % treated
 - decreases door-to-drug time
 - Keeping patients close to home when possible
 - decreasing unnecessary transfers when higher level of care not needed.
 - Expertise added to local care.
AllinaHealth Telestroke Team
United Hospital

- This practice had its beginning in 2006 as the first telestroke practice in Minnesota
- Collectively 36 years of post training practice experience in the acute management of stroke and 3 of the 4 providers with fellowship training
Cost–Effectiveness of Hub–and–Spoke Telestroke Networks for the Management of Acute Ischemic Stroke From the Hospitals' Perspectives (CIRCOUTCOMES.112.967125)

“Contrary to the common perception that a telestroke referral network poses a substantial financial burden on hospitals, our study revealed that it is likely to be a cost–saving strategy from the hospitals’ perspectives while also improving patient outcomes in terms of home discharges. To improve its generalizability, our model included the costs of maintaining round-the-clock coverage with stroke experts from the hub. Which hospitals, then, should bear the cost burden of a telestroke network?

The results of this economic research have implications on the assignment of financial responsibility between hub–and–spoke partners.

a. In a network that is fundamentally designed to transfer patients from spoke to hub, the hub hospital should subsidize the costs of the telestroke

b. whereas in a network designed predominantly to aid spoke hospitals’ capability to effectively maintain more AIS patients, the spoke hospitals should finance the system.

c. In the base-case model, targeting a spoke to hub transfer rate of ≈30% resulted in an economic benefit for the hub, the spokes, and the telestroke network overall.”